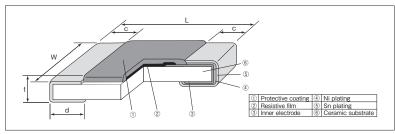

THICK FILM (ANTI SURGE)

SG73G Endured Pulse Power Flat Chip Resistors (Ultra Presicion Grade)

Coating color: Green No marking

Features

- Superior to RK73 series chip resistors in pulse withstanding voltage and high power.
- High Precision resistor with T.C.R. $\pm 50 \times 10^{-6}/K$ and Tolerance $\pm 0.25 \, \%.$
- · Suitable for both reflow and flow solderings.
- Products with lead free termination meet EU-RoHS requirements. EU-RoHS regulation is not intended for Pb-glass contained in electrode, resistor element and glass.
- AEC-Q200 qualified.

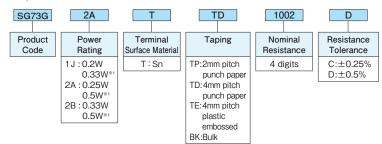

■Applications

• Car electronics, Power supply, Industrial equipment

■Reference Standards

IEC 60115-8 JIS C 5201-8 EIAJ RC-2134C

■Construction



■Dimensions

Type		Weight (g)					
(Inch Size Code)	L±0.2	W	С	d	t±0.1	(1000pcs)	
1J (0603)	1.6	0.8±0.1	0.3±0.1	0.3±0.1	0.45	2.14	
2A (0805)	2.0	1.25±0.1	0.3+0.2	0.3+0.2	0.5	4.54	
2B (1206)	3.2	1.6±0.2	0.4+0.2	0.4+0.2	0.6	9.14	

■Type Designation

Example

Contact us when you have control request for environmental hazardous material other than the substance specified by EU-RoHS.

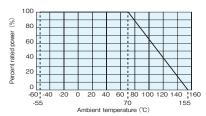
For further information on taping, please refer to APPENDIX C on the back pages.

Ratings

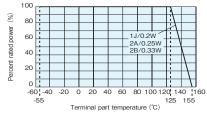
		Power	Rated	ed Rated T.C.R.		Resistance Range (Ω)		Max.	Max.	Packaging & Q'ty/Reel (pcs)		
	Type	Rating	Ambient Temp.	Terminal Part Temp.	(×10 ⁻⁶ /K)	C: ±0.25%	D:±0.5%	Working	Working Overload Voltage TP		TD TE	
			remp.	rait remp.		E24 · E96	E24 · E96	Voltage		IP	טו	IE
	4.1	0.2W	70°C	125℃	±50	10~1M	10~1M	150V	200V	10,000	5,000	_
	1J	0.33W*1	70°C	125℃								
	2A	0.25W	70°C	125℃				200V	400V	10,000	5,000	4,000*2
		0.5W*1	70°C	100℃								
	OD	0.33W	70°C	125℃				200V	400V	_	5,000	4,000**2
	2B	0.5W*1	70°C	120℃								

Operating Temperature Range: −55°C~+155°C

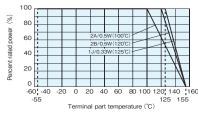
Rated voltage= $\sqrt{\text{Power Rating} \times \text{Resistance value or Max. working voltage, whichever is lower.}}$


*1 If you use at the rated power, please keep the condition that the terminal of the resistor is below the rated terminal part temperature. Please refer to the derating curves based on the terminal temperature of right side on the next page.

If any questions arise whether to use the "Rated Ambient Temperature" or the "Rated Terminal Part Temperature" in your usage conditions, please give priority to the "Rated Terminal Part Temperature". For more details, please refer to "Introduction of the derating curves based on the terminal part temperature" on the beginning of our catalog.


■ Derating Curve

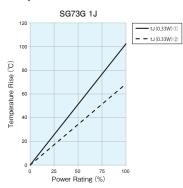
Ambient temperature

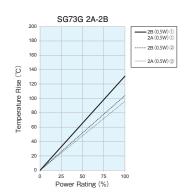


For resistors operated at an ambient temperature of 70°C or higher, the power shall be derated in accordance with the above derating

Terminal part temperature

Terminal part temperature

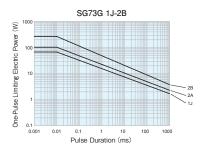



When the terminal part temperature of the resistor exceeds the rated terminal part temperature shown above, the power shall be derated according to the derating curve.

If you want to use at the rated power of X1, please use the derating curves based on the terminal part temperature of right side.

*Please refer to "Introduction of the derating curves based on the terminal part temperature" on the beginning of our catalog

■Temperature Rise



Regarding the temperature rise, the value of the temperature varies per conditions and board for use since the temperature is measured under our measuring conditions.

■One-Pulse Limiting Electric Power

The maximum applicable voltage is equal to the max. overload voltage. Please ask us about the resistance characteristic of continuous applied pulse. The pulse endurance values are not assured values, so be sure to check the products on actual equipment when you use them.

■Performance

Toot Itomo	Performance Requirements	$\Delta R \pm (\% + 0.1 \Omega)$	Took Makkada		
Test Items	Limit	Typical	- Test Methods		
Resistance	Within specified tolerance	_	25°C		
T.C.R.	Within specified T.C.R.	_	+25°C/-55°C and +25°C/+125°C		
Overload (Short time)	2	0.5	Rated voltage × 2.5 for 5s(2A : 0.5W, Rated voltage × 2 for 5s)		
Resistance to soldering heat	1	0.75	260°C±5°C, 10s±1s		
Rapid change of temperature	0.5	0.3	-55°C (30min.) /+125°C (30min.) 100 cycles		
Moisture resistance	2	0.75	40℃±2℃, 90%~95%RH, 1000h 1.5h ON/0.5h OFF cycle		
Endurance at 70°C or rated terminal part temperature	2	0.75	70°C±2°C or rated terminal part temperature ±2°C 1000h 1.5h ON/0.5h OFF cycle		
High temperature exposure	1	0.3	+155°C, 1000h		

■Precautions for Use

• The substrate of chip resistors is alumina. Cracks may occur at the connection of solder (solder fillet portion) due to the difference of the coefficient of thermal expansion from a mounting board when heat stress like heat cycle, etc. are repeatedly given to them. Care should be taken to the occurrence of the cracks when the change in ambient temperature or ON/OFF of load is repeated. The occurrence of the crack by heat stress may be influenced by the size of a pad, solder volume, heat radiation of mounting board etc., so please pay careful attention to designing when a big change in ambient temperature and conditions for use like ON/OFF of load can be assumed.